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Abstract

The spectral dynamic stiffness method using exact solutions of the governing equations as shape functions has been

popular for vibration and dynamic stability analyses of framed structures consisting of uniform members. Since non-

uniform members do not generally have closed form solutions, special cases only have been considered. However, exact

solutions are still possible for generally non-uniform members using power series. The paper studies the exact dynamic

stability of columns with distributed axial force by power series. Both uniform and distributed, compression and tension,

and conservative and non-conservative axial forces are considered. Interaction diagrams of various kinds of axial loads on

the natural frequencies including different intensities of the distributed loads and degree of tangency are given. Follower

tension buckling is reported for the first time. It is found that the power series outperforms the dynamic stiffness method in

terms of versatility in applications and numerical stability at the very low and high ends of the frequency spectrum.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

The spectral finite element method or the dynamic stiffness method has been widely used for structural
response analysis [1–6]. Eisenberger [5] used power series to obtain the exact dynamics stiffness for non-
uniform members. Lee and Park [7] performed spectral element analysis of a pipeline conveying internal
unsteady fluid. Kim et al. [8] derived the exact dynamic stiffness matrix of non-symmetric thin-walled beams
on elastic foundation using power series method. Finnveden [9,10], Langley [11] and Leung [12] investigated
random vibration using spectral elements.

Langthjem and Sugiyama [13] and Elishakoff [14] reviewed the topic on follower forces which was studied
extensively by Bolotin [15]. The aim of the present paper is to report on a new phenomenon of follower tension
buckling which has not been mentioned in the previous references.

We shall use the exact spectral elements to study the dynamic stability of beam columns and structures
under conservative and follower forces in this paper. The formulation of the exact spectral elements for beam
columns is briefly discussed in Section 2 and exact solutions are given in Section 3. Interaction diagrams are
compared with the exact dynamic stiffness method [4] whenever possible in Section 4. New results of follower
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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tension are given and follower tension buckling under uniformly distributed follower tension is originally
reported. The readers are referred to Langthjem and Sugiyama [13] and Elishakoff [14] for a comprehensive
review of follower compression with more than 200 references in total. Effects of follower tension have not
been reported in literatures.

2. Governing equations

The total potential energy for a beam-column subject to distributed tension axial force P(x) and lateral force
f(x) per unit length at position x from the left end is

V ¼
1

2

Z
½EIðv00Þ2 � Pðv0Þ2 � 2fv�dx, (1)

where EI is the flexural rigidity and a dash denotes derivative with respect to x. In Eq. (1), the deflection v in
the y direction is considered under the usual assumptions associated with thin beams. The stationary
principle of total potential energy states that the variation of the total potential energy is zero when in
equilibrium, Eq. (1) gives

dV ¼ EI v00dv0jb � ½ðEI v00Þ0 � Pv0�dvjb þ

Z
½ðEI v00Þ00 � ðPv0Þ0 � f �dvdx ¼ 0, (2)

where |b denotes evaluation at the boundaries. Eq. (2) gives the governing equation

ðEI v00Þ00 � ðPv0Þ0 � f ¼ 0 (3)

and the boundary conditions:

EI v00 dv0 � ½ðEI v00Þ0 � Pv0�dv ¼ 0; or M dv0 þQ dv ¼ 0 (4)

in which the boundary shears and moments are, respectively,

Q ¼ Pv0 � ðEI v00Þ0; M ¼ EI v00. (5)

For beam column on elastic foundation of modulus k, f should include the elastic reaction from the
foundation �kv; and for vibration problem, f should include the inertia force �rA €v where dots denote
differentiations with respect to time. The total mass is given by the product of mass density r, cross-sectional
area A and length l of the beam column, respectively. For harmonic vibration with frequency o, one can put
v(x,t) ¼ v(x)sin(ot) and the inertia force becomes

�rA €vðx; tÞ ¼ rAo2vðxÞ sinðotÞ. (6)

Substituting Eq. (6) into Eq. (2) and cancelling sin(ot), one has the governing equation for the amplitude of
vibration v(x):

ðEI v00Þ00 � ðPv0Þ0 � o2rAv ¼ 0 (7)

and the associated boundary conditions (4) and (5). We use the same symbol for displacement and its
amplitude when no confusion arises. For uniform beam columns, Eq. (7) can be non-dimensionalized to

v0000 � ðpv0Þ0 � l4v ¼ 0, (8)

where a dash denotes differentiation with respect to x/l. p ¼ P/EI and l4 ¼ o2rAl4/EI and the associated
boundary conditions become

v00 dv0 � ½v000 � pv0�dv ¼M dv0 þ V dv ¼ 0. (9)

3. Solution by power series

Assuming, without loss of generality,

pðxÞ ¼ p1 þ p2xþ p3x
2 (10)
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and the solution of Eq. (8) with coefficients vj to be determined,

vðxÞ ¼
Xn

j¼1

vjx
j�1, (11)

one has, after substituting into Eq. (8) and comparing similar terms of xj,

v5þj ¼
½l4 þ jp3ð1þ jÞ�v1þj þ ð1þ jÞ2p2v2þj þ ð1þ jÞð2þ jÞp1v3þj

ð1þ jÞðj þ 2Þðj þ 3Þðj þ 4Þ
. (12)

Since there are four discrete boundary conditions, two at each of the two ends, the displacement
function (11) can be expressed in terms of the integration constants v1, v2, v3, v4 as shown in Appendix A when
n ¼ 15 so that

vðxÞ ¼
Xn

j¼1

vjx
j�1 ¼ ½ w1ðxÞ w2ðxÞ w3ðxÞ w4ðxÞ �

v1

v2

v3

v4

8>>><
>>>:

9>>>=
>>>;
¼ vðxÞr, (13)

vðxÞ ¼ w1ðxÞ w2ðxÞ w3ðxÞ w4ðxÞ
h i

and r ¼

v1

v2

v3

v4

8>>><
>>>:

9>>>=
>>>;
.

It is also observed that the coefficients decay like n! and therefore the displacement function
always converges rapidly for any combination of p and l. To achieve machine precision of 10�14,

one must set ln/n!o10�14. The Stirling formula states that n! �
ffiffiffiffiffiffiffiffi
2pn
p

nn e�n for large n. Therefore,
one can estimate the number of terms for a particular value of frequency parameter to achieve the required
precision.

To get the shape function from the displacement function (13), the following displacement boundary
conditions are required:

d ¼

vð0Þ

v0ð0Þ

vð1Þ

v0ð1Þ

8>>>><
>>>>:

9>>>>=
>>>>;
¼

vð0Þ

v0ð0Þ

vð1Þ

v0ð1Þ

2
66664

3
77775r ¼ Cr for C ¼

vð0Þ

v0ð0Þ

vð1Þ

v0ð1Þ

2
66664

3
77775 or r ¼ C�1d and (14)

vðxÞ ¼ vðxÞr ¼ vðxÞC�1d ¼ NðxÞd, (15)

where N(x) ¼ v(x)C�1 is the shape function matrix in finite element sense. The dynamic stiffness matrix D is
given by

F ¼

�V ð0Þ

�Mð0Þ

V ð1Þ

Mð1Þ

8>>>><
>>>>:

9>>>>=
>>>>;
¼ Dd. (16)

Due to the reciprocal theorem, the dynamic stiffness matrix must be symmetrical when the loading is
conservative. The paper considers both conservative and non-conservative loads and their combination as
shown in Fig. 1.

The boundary forces and moments for the conservative case are the same as given by Eq. (9), i.e.,

M ¼ v00 and V ¼ pv0 � v000. (17)
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Fig. 1. Columns subject to uniform axial or follower forces.
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If the axial loads are follower, then

M ¼ v00 and V ¼ �v000. (18)

If the axial loads are partially follower of fraction m, which is called the degree of tangency, then

M ¼ v00 and V ¼ ð1�mÞpv0 � v000. (19)

when p is constant, analytical solutions in terms of exponential functions are readily available [4].
4. Numerical examples

Numerical examples of buckling problems of columns subjected to conservative or follower tension and are
considered in this study. The relationships of

l ¼
rAl4o2

EI

� �1=4

; sp ¼
pl2

EI

� �1=2

and sq ¼
pql3

EI

� �1=2

,

where the distributed axial load is given by p(1+qx) are shown in the subsections below.
4.1. Conservative buckling problems of columns

Analytical dynamic stiffness and substructure method has been used by Leung [4] to solve the buckling
problems of columns subject to uniformly distributed axial forces. In this section the results calculated by
power series will be compared with Leung’s results. The influence of axial compression on the natural
frequency is given in Fig. 2 showing the lowest two modes. The zigzag line in Fig. 2 corresponds to the pole
line where the dynamic stiffness is positive infinity on one side and negative infinity on the other side. The pole
line can be removed by dividing the dynamic stiffness by detC. The pole lines of the subsequent interaction
diagrams are eliminated using the technique.

The interaction diagram for a cantilever column subject to axial tension is compared with the analytic
dynamic stiffness matrix method in Fig. 3, in which the narrow full lines are the results from the exact dynamic
stiffness method and the thick dashed lines from the power series. No difference can practically be found. It is
shown that the power series is numerically stable even for very high modes while the exact dynamic stiffness
method is numerically unstable due to the cancellation of large numbers in both the numerator and the
denominator of the frequency functions in the non-symmetric dynamic stiffness resulting in some blurred
areas in the diagrams.
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Fig. 3. Clamped–free column subject to uniform follower tension.
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4.2. Buckling problems of columns under axial tension and follower tension

Consider a beam-column subject to uniform follower tension or distributed follower tension. The
interaction diagram for a cantilever column is compared with the column subject to conservative uniform
tension in Fig. 4a–d and conservative distributed tension in Fig. 5a–d for various boundary conditions. The
narrow full lines and the thick dashed lines are the results for the column subject to follower tension and
conservative tension, respectively. Only one element is used in all cases.

4.2.1. Uniform axial tension

There is no difference for all boundary conditions when subject to uniform follower axial tension or
conservative axial tension except for clamped–free condition as shown in Figs. 4a–d. The phenomenon that
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Fig. 4. (a) Clamped–free column subject to uniform tension, (b) hinged–hinged column subject to uniform tension, (c) clamped–hinged

column subject to uniform tension and (d) clamped–clamped column subject to uniform tension.
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the first mode has negative gradient in the interaction diagram only happens to the clamped–free condition
subject to follower tension. The same phenomenon is checked as correct by the analytic dynamics stiffness
method. In the figures, dotted lines are for conservative loads and solid lines are for follower forces.

4.2.2. Distributed loads

Similarly, there is no much difference for all boundary conditions when subject to distributed follower
axial tension or conservative axial tension except for clamped–free condition as shown in Figs. 5a–d.
The phenomenon that the first mode has negative gradient in the interaction diagram only happens to the
clamped–free condition subject to follower tension. The same phenomenon cannot be checked by the analytic
dynamics stiffness method which works for uniform axial loads only. In the figures, dotted lines are for
conservative loads and solid lines are for follower forces.

4.3. Interaction diagrams with various distributed loads

The influence of the distributed axial force s2 ¼ p(1+qx) on the natural frequency l4 ¼ o2rAl/EI is studied
here. The parameter p has the unit of force (Newton) and the parameter q has the unit of reciprocal of length
(m�1) representing the strength of linearly distributed force. Figs. 6a and b show the conservative and follower
interaction diagrams respectively when the axial forces are compressive, while Figs. 7a and b give the
corresponding diagrams for tension axial forces.

The interaction lines in Fig. 6a do not have inflexion points and flutter loads are obviously observed
in Fig. 6b. The interaction lines in Fig. 7a always have inflexion points for conservative tension. The inflexion
curve is much magnified for follower tension when q ¼ 0. When q is non-zero, follower tension buckling is
possible. The phenomenon is reported here for the first time.
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Fig. 5. (a) Clamped–free column subject to distributed tension, (b) hinged–hinged column subject to distributed tension,

(c) clamped–hinged column subject to distributed tension and (d) clamped–clamped column subject to distributed tension.
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4.4. Interaction diagrams for partially follower force

Define the degree of tangency m in Eq. (19) as the fraction of the uniform follower compressive load. One
has the interaction diagram for the first two modes in Fig. 8. It is interesting to note that most curves pass
through the point (l, sp) ¼ (2.667,4.00). It is just a coincidence without important physical meaning.
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The line for m ¼ 0.5 is unmarked. When mo0.5, coalescence of two modes is not possible but flutter can
still be observed. For example, when m ¼ 0.49, the curve moves up from l ¼ 0 and reaches maximum at
(l,sp) ¼ (2.85,4.03). Slight increase from sp ¼ 4.03 will result in a pair of complex natural frequencies
represent classical flutter.

4.5. Influence of end mass

Consider the influence of a concentrated mass M as shown in Fig. 9, such that M ¼ rrAl for various values
of r. When the mass is attached on the free end of the column, the modification of the mass matrix is to include
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the termMe(3,3) ¼M at the entry (3, 3) of the mass matrix. When the columns are subject to uniform follower
axial tension, the interaction diagram is given in Fig. 10. It is found that the end mass has significant influence
on the natural modes of column quantitatively but not qualitatively.
5. Discussion and conclusion

Follower tension buckling was mentioned without results by Zyczkowski in Ref. [16, p. 273] using an
example of a vessel loaded by a liquid shown in Fig. 11 which was investigated by Gajewski and Palej (1974).
Unfortunately, the author could not find such reference. Therefore, it may be concluded that follower tension
buckling is originally reported at least in the western world. The exact spectral dynamic stiffness is very
efficient in studying such problems.
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Appendix A. Shape functions when n ¼ 15 and w ¼ k4

vðxÞ

¼ v1 1þ
wx4

24
þ

1

720
p1wx6 þ

p2wx7

1260
þ

p2
1wx8

40320
þ

p3wx8

2016
þ

w2x8

40320

�

þ
p1p2wx9

36288
þ

p3
1wx10

3628800
þ

p2
2wx10

129600
þ

31p1p3wx10

1814400
þ

p1w
2x10

1814400
þ

þ
p2
1p2wx11

2217600
þ

p2p3wx11

103950
þ

p2w2x11

3326400
þ

p4
1wx12

479001600
þ

59p1p
2
2wx12

239500800

þ
67p2

1p3wx12

239500800
þ

p2
3wx12

332640
þ

p2
1w2x12

159667200
þ

23p3w2x12

119750400
þ

w3x12

479001600

þ
p3
1p2wx13

222393600
þ

p3
2wx13

22239360
þ

17p1p2p3wx13

55598400
þ

p1p2w
2x13

148262400

þ
p5
1wx14

87178291200
þ

79p2
1p2

2wx14

21794572800
þ

61p3
1p3wx14

21794572800
þ

83p2
2p3wx14

990662400

þ
59p1p

2
3wx14

622702080
þ

p3
1w2x14

21794572800
þ

p2
2w2x14

544864320
þ

17p1p3w2x14

3962649600

þ
p1w3x14

29059430400

�
,

þ v2 xþ
p2x

4

24
þ

p3x
5

60
þ

wx5

120
þ

1

720
p1p2x

6 þ
p2
2x

7

1260
þ

p1p3x
7

2520

�

þ
p1wx7

5040
þ

p2
1p2x

8

40320
þ

p2p3x
8

1344
þ

p2wx8

6720
þ

p1p
2
2x9

36288
þ

p2
1p3x9

181440

þ
p2
3x9

6048
þ

p2
1wx9

362880
þ

p3wx9

11340
þ

w2x9

362880
þ

p3
1p2x10

3628800
þ

p3
2x

10

129600

þ
43p1p2p3x10

1814400
þ

p1p2wx10

259200
þ

p2
1p

2
2x11

2217600
þ

p3
1p3x11

19958400
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þ
29p2

2p3x11

2494800
þ

43p1p
2
3x

11

9979200
þ

p3
1wx11

39916800
þ

13p2
2wx11

9979200
þ

p1p3wx11

443520

þ
p1w2x11

19958400
þ

p4
1p2x12

479001600
þ

59p1p
3
2x12

239500800
þ

p2
1p2p3x12

2721600
þ

p2p
2
3x12

177408

þ
p2
1p2wx12

19958400
þ

5p2p3wx12

3193344
þ

p2w2x12

319334400
þ

p3
1p

2
2x13

222393600
þ

p4
2x

13

22239360

þ
p4
1p3x13

3113510400
þ

139p1p
2
2p3x

13

389188800
þ

p2
1p2

3x
13

17690400
þ

p3
3x13

1153152

þ
p4
1wx13

6227020800
þ

101p1p
2
2wx13

3113510400
þ

p2
1p3wx13

34214400
þ

7p2
3wx13

14826240

þ
p2
1w2x13

2075673600
þ

61p3w2x13

3113510400
þ

w3x13

6227020800
þ

p5
1p2x14

87178291200

þ
79p2

1p
3
2x14

21794572800
þ

p3
1p2p3x

14

283046400
þ

31p3
2p3x14

330220800
þ

1171p1p2p2
3x

14

7264857600

þ
p3
1p2wx14

2421619200
þ

p3
2wx14

145297152
þ

17p1p2p3wx14

440294400
þ

17p1p2w2x14

29059430400

�
,

v3 x2 þ
p1x4

12
þ

p2x
5

30
þ

p2
1x

6

360

�
þ

p3x6

60
þ

wx6

360
þ

1

420
p1p2x

7 þ
p3
1x8

20160

þ
p2
2x

8

2016
þ

13p1p3x
8

10080
þ

p1wx8

10080
þ

p2
1p2x9

15120
þ

p2p3x9

1890
þ

p2wx9

22680

þ
p4
1x

10

1814400
þ

13p1p
2
2x

10

453600
þ

17p2
1p3x

10

453600
þ

p2
3x10

7200
þ

p2
1wx10

604800

þ
p3wx10

37800
þ

w2x10

1814400
þ

p3
1p2x

11

997920
þ

p3
2x11

249480
þ

p1p2p3x
11

31185

þ
p1p2wx11

665280
þ

p5
1x

12

239500800
þ

p2
1p

2
2x12

1496880
þ

p3
1p3x

12

1710720
þ

p2
2p3x

12

151200

þ
59p1p

2
3x

12

6652800
þ

p3
1wx12

59875200
þ

41p2
2wx12

119750400
þ

109p1p3wx12

119750400

þ
p1w

2x12

79833600
þ

p4
1p2x

13

103783680
þ

p1p
3
2x

13

5189184
þ

p2
1p2p3x13

1297296
þ

31p2p
2
3x

13

8648640

þ
p2
1p2wx13

43243200
þ

p2p3wx13

2402400
þ

p2w
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